生命科學儀器

環境科學

Q-Box AQUA Aquatic Respiration
水生呼吸測量

Q-Box AQUA 水生呼吸測量套件設計 用於測量水生動物呼吸測量室內溶氧的減少量(VO2)。可以研究脊椎動物和無脊椎動物。 Q-Box AQUA 採用間歇流呼吸測定原理。使用附加組件,在一次實驗中最多可監測 4 個水生室/樣本。所有房間都會經歷相同的實驗條件。

數量

特徵

  • 光學溶氧探頭
  • 小型呼吸測量室(140毫升,內徑3.8厘米,長15.3厘米)
  • 大型呼吸測量室(660毫升,內徑8.2厘米,長16.7厘米)
  • 迷你AQUA腔室(9毫升,內徑1.6厘米,長4.5厘米)
  • mini-AQUA 微腔(1.23 毫升,1.5 公分內徑,0.85 公分深)
  • 水浴溫度和鹽度探頭
  • 液體幫浦(1 LPM 或 mini-AQUA 中為 0.1LPM)和三通閥
  • 用於三通閥控制的數位控制單元
  • 6通道資料介面
  • 數據採集軟體
  • 絕對壓力感測器
  • 堅固的防風雨外殼

應用

  • 水生呼吸測定研究
  • 水生脊椎動物和無脊椎動物研究
  • 實驗室和實地研究(帶可選電池組)

Q-Box AQUA 操作

將動物放入呼吸測定室並測量由於動物消耗而導致的溶解 O2 的減少。軟體中顯示根據鹽度、溫度和壓力校正的溶氧數據,並用於計算氧氣消耗率 (VO2) 的即時值。測量是連續進行的,無需將動物從室內移除。測量之間用淡水沖洗測量室。這些 VO2 的間歇流量測量克服了連續封閉式呼吸測定的缺點,其中腔室中的溶解 O2 水平可能會降低到缺氧水平。 Q-Box AQUA 套件的所有組件均裝在堅固的防風雨箱中,方便運輸和儲存。
在實驗過程中,水會透過液體泵在動物室和帶有光學 DO 探頭的流通容器中循環。由數位控制單元 (DCU) 控制的三通閥,軟體確定係統是處於循環模式還是沖洗模式。在循環模式下,進行呼吸測量,在沖洗模式下,用水浴中的含氧水沖洗動物室。循環沖洗循環重複進行,直到實驗結束。沖洗和循環階段的時間由使用者在軟體中選擇。


References

  • M Aliende-Hernandez et al. (2024) Metabolic response of the starfish Coscinasterias Tenuispina (Lamarck, 1816) to ocean warming. Cah. Biol. Mar 65: 334-341
  • K Osterheld et al. (2023) Triploidy in Mytilus edulis impacts the mechanical properties of byssal threads. Aquaculture 566 https://doi.org/10.1016/j.aquaculture.2022.739191.
  • SS Fontaine, PM Mineo & KD Kohl (2022) Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nature Ecology & Evolution 6, 405-417 https://doi.org/10.1038/s41559-022-01686-2
  • D H Hudson (2021) Metabolic response to temperature stress in the Colombian freshwater crab Neostrengeria macropa (H. Milne Edwards, 1853) (Decapoda: Brachyura: Pseudothelphusidae). Journal of Crustacean Biology, Feb 2021, 1-7 doi:10.1093/jcbiol/ruab002
  • Rahi L. (2021)Temperature induced changes in physiological traits and expression of selected candidate genes in black tiger shrimp (Penaeus monodon) larvae. Aquaculture Reports 19 https://doi.org/10.1016/j.aqrep.2021.100620
  • Rahi L et al. (2020) Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla Olivacea). Aquaculture Research 51: 4290-4301 https://doi.org/10.1111/are.14772
  • Lucey NM, Collins M, Collin R (2020) Oxygen-mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecology and Evolution 10: 1145-1157 https://doi.org/10.1002/ece3.5929
  • Huang M et al. (2020) The Influence of Atrazine on the Growth, Development and Oxygen Consumption of Pelophylax nigromaculatus Tadpoles. Nature Environment and Pollution Technology 19: 1311-1317
  • Lamarre SG et al. (2019) Interrelationship between contractility, protein synthesis, and metabolism in mantle of juvenile Cuttlefish (Sepia officinalis). Frontiers in Physiology 10: 1051 doi: 10.3389/fphys.2019.01051
  • Rangel RE, Johnson DW. (2018) Metabolic responses to temperature in a sedentary reef fish, the bluebanded goby (Lythrypnus dalli, Gilbert) Journal of Experimental Marine Biology and Ecology 501 Pages 83-89https://www.sciencedirect.com/science/article/pii/S0022098117305130
  • Black MN et al. (2017) Environmentally relevant concentrations of amine-functionalized copper nanoparticles exhibit different mechanisms of bioactivity in Fundulus Heteroclitus in fresh and brackish water. Nanotoxicology 11: 1070-1085 https://www.tandfonline.com/doi/abs/10.1080/17435390.2017.1395097
  • Keogh CL et al (2017) The double edge to parasite escape: invasive host is less infected but more infectable Ecology, 98(9) 2241–2247
  • Callaghan NI. Et al (2016) Zinc oxide nanoparticles trigger cardiorespiratory stress and reduce aerobic scope in the white sucker, Catostomus commersonii NanoImpact 2: 29–37
  • Lamarre SG. et al. (2016) Metabolic rate and rates of protein turnover in food deprived cuttlefish, Sepia Officinalis (Linnaeus1 1758). Am J Physiol Regul Intregr Comp Physiol 310: R1160-R1168
  • Bessemer RA. Et al. (2015) Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii Nanotoxicology 9: 861-870SHAR